
CognIDE: A Psychophysiological Data Integrator Approach for
Visual Studio Code

Roger Denis Vieira
Universidade do Vale do Rio dos Sinos

São Leopoldo, Rio Grande do Sul
rogervi@edu.unisinos.br
rogerdenis@gmail.com

Kleinner Farias
Universidade do Vale do Rio dos Sinos

São Leopoldo, Rio Grande do Sul
kleinnerfarias@unisinos.br

kleinner@gmail.com

ABSTRACT
Wearable devices capable of capturing psychophysiological data
are a reality today. Recent studies indicate that the developer’s
cognitive indicators (e.g., level of attention and meditation) might
affect code comprehension and maintenance tasks. However, cur-
rent Integrated Development Environments (IDEs) and code editors
like Visual Studio (VS) Code fall short of providing contextual in-
formation of cognitive indicators located throughout source code.
This article proposes CognIDE, a tool-supported approach for in-
tegrating psychophysiological data related to cognitive indicators
into the VS Code. CognIDE help VS code to push a step forward,
providing actionable contextual information alongside the evolving
source code. The CognIDE was evaluated through a survey with 6
professionals and interviews for investigating its effects on their
perception of usefulness, ease of use, and intention to use in real-
world settings. With a high acceptance of the professionals, the
emerging results show the potential for using CognIDE to identify
and prioritize the review of source code with specific cognitive
indicators, mainly related to bugs or inadequate understanding of
code snippets.

CCS CONCEPTS
• Applied computing → Bioinformatics; • Software and its
engineering → Formal software verification; Integrated and
visual development environments; Software testing and debugging;
• Human-centered computing→ Human computer interaction
(HCI).

KEYWORDS
Data Analysis, Software Engineering, Neurosciences, Bioinformat-
ics, Data Processing

ACM Reference Format:
Roger Denis Vieira and Kleinner Farias. 2020. CognIDE: A Psychophysiolog-
ical Data Integrator Approach for Visual Studio Code. In 34th Brazilian Sym-
posium on Software Engineering (SBES ’20), October 21–23, 2020, Natal, Brazil.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3422392.3422453

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00
https://doi.org/10.1145/3422392.3422453

1 INTRODUCTION
The use of wearable devices has increased in recent years. Such
devices can measure and collect different types of data such as phys-
iological data, e.g. heart rate, body temperature, and glycemic index.
Personal electroencephalography (EEG) devices such as Neurosky
Mindwave Mobile 2 would be an example of these wearable devices.
These devices can measure the neural activity of individuals and
make this data available for applications, which, in turn, provide
different functionalities, such as the measurement of levels of atten-
tion and meditation [3], drowsiness, or even, enables the capability
of brain-computer interaction (BCI) [2].

Recent studies [5, 6, 14] have sought to understand the brain
activity of developers while they are doing software development
tasks. Some studies [8, 13] aim to grasp the effects of mental states
on the production of defective software artifacts. These studies
show the importance of collecting psychophysiological data and
relating them to tasks performed and artifacts generated by devel-
opers. Typically, software developers use integrated development
environments (IDEs) to perform software development tasks. How-
ever, IDEs and wearable devices are not integrated. This makes it
difficult or challenging to collect psychophysiological data while
developers perform tasks in IDEs like Visual Studio (VS) Code.

Despite the need to integrate psychophysiological data into IDEs,
the literature still lacks an approach capable of meeting this issue.
Even worse, current IDEs and code editors like VS Code fall short
of providing contextual information of cognitive indicators located
throughout source code.

Murphy [11] argues that the use of contextual information as a
first-class construct is an emerging research field. Once explored,
it will take the tools used by software developers a step further.
Such information may be applied to enhance the human capacity to
deal with software development issues [11]. For example, software
architects might be more effective in choosing pieces of code to
be refactored when choosing those requiring greater mental effort
to be understood properly. Siegmund et al. [15] also highlight the
importance of understanding cognitive processes that are strictly
involved in code comprehension tasks. Today, recent empirical stud-
ies [7, 10, 14] in this field have a configuration that does not match
the reality of software developers. Because such studies require
participants to mentally exercise small pieces of code, avoiding
any type of body movement as much as possible. However, under-
standing source code involves not only cognitive activities, but also
motor, social and human-machine interaction activities, and mainly
using IDEs resources, via debugging tool and syntax highlighting,
for example.

393

https://doi.org/10.1145/3422392.3422453
https://doi.org/10.1145/3422392.3422453

SBES ’20, October 21–23, 2020, Natal, Brazil Roger Denis Vieira and Kleinner Farias

This article, therefore, proposes CognIDE, a tool-supported ap-
proach for integrating psychophysiological data related to cognitive
indicators into the VS Code. CognIDE helps Microsoft VS Code to
push a step forward, providing actionable contextual information
alongside the evolving source code. The CognIDE was evaluated
through a questionnaire with 6 professionals and interviews for
investigating its effects on their perception of usefulness, ease of
use, and intention to use in real-world settings. The emerging re-
sults are encouraging and show the potential for using CognIDE
to support contextual information concerning cognitive indicators
alongside the source code.

The remainder of the paper is organized as follows: Section 2
briefly presents a synthesis of identified similar works. Section 3
describes the proposed approach. Section 4 introduces some im-
plementation aspects. Section 5 describes the study methodology
to initially assess the proposed approach. Section 6 discusses the
emerging results. Section 7 presents some concluding remarks and
future work.

2 RELATEDWORKS
Among the identified developed tools, the VITALSE [1] stands out.
This tool was conceived by the need to analyze data from different
devices applied in software engineering experiments, such as eye-
trackers and fNIRS (functional near-infrared spectroscopy), to be
loaded, synchronized, and synthesized according to the developed
experiment. This feature allows the researcher to perform the data
analysis in an interactive way and as a function of time, removing
the need to analyze it individually and using several distinct tools.

Despite the development of some tools, there was still a demand
for analysis of multimodal data from devices of different natures.
In this context, CodersMUSE [12] was developed. This tool allows
the integration of data collected by eye-trackers, fNIRS, fMRI (func-
tional magnetic resonance imaging), and physiological sensors, as
well as events from the individual, such as text selection and clicks.
Like VITALSE, CodersMUSE also allows synchronization and vi-
sualization of data according to time, as well as its presentation in
the context of the generated source code.

Unlike the observed tools, which statically presented the source
code, through the images collected by the eye-tracker, and synchro-
nized with the other psychophysiological data collected, iTrace-
Vis [4] was developed as an extension to the Eclipse IDE. This
extension, despite only synchronizing data from eye-trackers, al-
lows the analysis of the source code used in the experiment directly
in the IDE and the text format, in addition to presenting the data
collected by the device in its real context.

Although the related works presented good alternatives as in-
teractive data visualization tools, in exception of iTraceVis, which
has no multimodal psychophysiological data support, these solu-
tions presented no native integration within IDEs, neither a mech-
anism that contextualizes collected data with the source code non-
statically.

3 THE COGNIDE APPROACH
Born as an extension and architecture proposal designed originally
for the Microsoft Visual Studio Code editor, the CognIDE presents
the capability of interacting with light-weight EEGs, enabling a

data extraction, transformation, and load to external tools, such
as IDEs. Therefore, CognIDE’s main objective is to provide data
integration across sensor devices and IDEs, facilitating the analysis
process in both academic and industrial contexts.

The data processed by CognIDE is presented visually both in
the source code editor and in external dashboard tools. This re-
source can be used both in scientific experiments, helping in the
psychophysiological processes identification presented by the de-
velopers, as a decision support tool applied in the software devel-
opment process, assisting developers in the decision process in
different contexts.

3.1 Overview of the CognIDE approach
Figure 1 introduces an overview of the intelligible, adopted the
integration process of the CognIDE approach. The built-in process
steps seek to collect, transform, classify and exhibit actionable con-
textual information related to the developer’s cognitive indicators
and the code snippets. That is, this process seeks to contextualize
cognitive indicators by placing them next to the code snippet that
was responsible for generating them. Thus, the focus is on the in-
tegration, not on the evaluation of the collected data. Each step of
this process is being described as follows:

• Step 1: Data acquisition: This step aims at collecting the
electrical signals of brain activity produced by software de-
velopers’brains while they comprehend source code or per-
form maintenance tasks. For this, personal wearable EEG
devices, such as NeuroSky MindWave Mobile 2, were used
to obtain raw values of the brain signals.

• Step 2: Data processing: The obtained raw data are format-
ted and filtered, and then their features are extracted. These
features are essential to the next steps.

• Step 3: Data storage: At this moment, the brain signals’
raw data have already been converted into cognitive indica-
tors, using EEG devices’ APIs. These indicators are sent to a
storage engine, giving rise to a purported psycho dataset.

• Step 4: Psycho-data classification: After storing the psy-
cho dataset for each developer, all datasets are tagged and
their cognitive indicators are associated with the source code
responsible to produce them. That is, CognIDE generates
contextual information to giving context to the cognitive
indicator, developer, snippets of source code, and mainte-
nance tasks. Moreover, the CognIDE uses a context-aware
approach to improve, for example, the experience of team
leaders by extracting contextual metadata, allowing them to
identify and prioritize the review of source code changed by
developers with bug-related cognitive indicators.

• Step 5: Psycho-KPI dashboard creation: With the psy-
chophysiological data sets in context, the next step is to
present them to CognIDE users in a friendly way. In this
sense, the CognIDE creates a psycho-KPI dashboard to repre-
sent key cognitive performance information. For this line and
gauge, charts were used to display the processed cognitive
indicators.

• Step 6: Dashboard visualization: This step involves ren-
dering and viewing the dashboard by the CognIDE user. Typ-
ically, with tight time and projects with hundreds of modules,

394

CognIDE: A Psychophysiological Data Integrator Approach for Visual Studio Code SBES ’20, October 21–23, 2020, Natal, Brazil

Figure 1: An overview of CognIDE operating model approach.

team leaders tend to follow their intuition when prioritizing
which module to review or even refactoring. Rather than go-
ing with the gut, they can now use the psycho-KPI dashboard
to make decisions based on cognitive indicators upfront. If
a team leader identifies that a developer changed a snippet
of source code with a low amount of attention, then he can
prioritize the review of this code snapshot right away.

3.2 Component-based Architecture
Figure 2 introduces a component-based architecture to support the
implementation of the CognIDE approach. Together, the compo-
nents are responsible for implementing each step of the proposed
process in Figure 1. For a better comprehension of the proposed
architecture, each module is described in an abstract point-of-view,
regarding its behavior rather than the applied technology as fol-
lows:

• Data Connector: This component receives binary data in a
low-level communication layer, such as Serial Port Protocol
(SPP) over Bluetooth, using the EEG-specific communication
protocol, and parse the data in a high-level format such
as JavaScript Object Notation (JSON), Extensible Markup
Language (XML).

• Data Adapter: It provides an agnostic format interaction
between theData Connector andData Processor components
to reduce architectural friction in case of Data Connector
change.

Figure 2: An overview of the component-based adopted ar-
chitecture.

• Data Processor: It applies mathematical operations to trans-
form and extract features from Data Connector component’s
raw data into useful information that can be analyzed;

• Data Recorder: This component abstracts the data persis-
tence layer, making it available for saving and retrieving
already processed data.

• Data Server: It acts as the key component of the architec-
ture. It receives data from the Data Connector, processes it

395

SBES ’20, October 21–23, 2020, Natal, Brazil Roger Denis Vieira and Kleinner Farias

using the Data Processor and sends it to be displayed by the
IDE. This component also receives requests from the IDE,
relating the artifacts to their metrics and persisting them in
the database engine.

• IDE Plug-in: communicating with the data server is its
main responsibility, handling and presenting the exchanged
data inside of the IDE, precisely alongside the source code,
aiming to provide a better data visualization capable of en-
abling insights regarding the presented data and related code
snippets.

Privacy issues remain a major concern when psychophysiologi-
cal data from humans are collected. Given this issue, the proposed
approach can be adapted to store and group the development team
members’ data according to the role they assume. In this way, the
identity of the team member is preserved, ensuring privacy. After
presenting an overview of the proposed process (Section 3.1) and
introducing the architectural components, the following section dis-
cusses the implementation aspects of the prototype of the CognIDE
approach.

4 IMPLEMENTATION ASPECTS
This section aims to introduce the implementation aspects, report-
ing the decisions taken to enable the development of a prototype 1.
Section 4.1 of the proposed approach presents an initial proposal
of the psycho-data dashboard discussing how the main architec-
tural components were implemented in terms of technology used.
Section 4.2 presents the Visual Studio Code extension to support
psychophysiological metrics located throughout the source code.

4.1 A Proposal of Psycho-data Dashboard
Figure 3 presents an initial proposal of psycho-data dashboard. The
native psychophysiological metrics of Attention and Meditation
presented were randomly generated to simulate the real data col-
lected by the Neurosky Mindwave Mobile 2 EEG device, and not
represent the real state of any specific subject. The approach were
adopted for illustrative purposes only, since the main objective of
this study is to assess the acceptance of the tool and the impact of
presenting the data along with the source code.

The Data Connector component (Figure 2) was accomplished
using the ThinkGear Connector, a free option available on the mar-
ket and that supports the Mindwave Mobile devices, a product line
of light-weight EEG devices produced by NeuroSky company and
wide-adopted in Brain-Computer Interaction projects and emerging
neuroscience experiments.

The Data Server, namelyCognIDE Server, was developed using
the server-side JavaScript engine NodeJS. This choice was based
on the fact that NodeJS’s capabilities of handling requests without
blocking the main thread (called event loop), and its event-driven
support, as well. All transactions between IDE and Data Server
was performed through JSON over HyperText Transport Protocol
(HTTP), managed by the NodeJS’s HTTP library, Express.

As a mechanism for storing processed data, InfluxDB, a time
series database, was adopted. This sort of database allows a high
rate of insertion operation, in addition facilitating the analysis of
values oscillation over time.
1https://github.com/rogerdenisvieira/cognide-prototype

The data stored into InfluxDB was consumed by Chronograf
dashboard engine, which was responsible for presenting the pro-
cessed data in an easy-to-use way (Figure 3). This choice was made
upon the native integration across Chronograf and InfluxDB, once
both solutions are produced by the same company.

Figure 3: A sample of Chronograf dashboard used to illus-
trate how the generated metrics are being presented for the
helloWorld.cs artifact in a interval of 15 minutes.

4.2 An Extension of Visual Studio Code
CognIDE extends Visual Studio Code, namely CognIDE extension,
to present the psychophysiological data together with the code
snippets, which are responsible for producing them. In this way,
the data is contextualized, providing visual feedback in the code
editor. The development of the CognIDE extension took place using
the Microsoft Visual Studio code editor, which provides a high-
level API for the development of custom extensions (or plug-ins).
Figure 4 exhibits the cognitive metrics contextualized in the code.
In line 1, for example, the metrics of attention and meditation were
recorded, assuming the values of 40.16% and 99.27%, respectively.
This means that the developer had 40.16% attention and 99.27%
meditation when editing the line 1.

The proposed extension was implemented using the TypeScript
superset and used CodeLens, a popular feature in Visual Studio
Code to support actionable contextual information located through-
out the source code. An important question was to define how to
associate psychophysiological data with code snippets, that is, how
to capture and contextualize the data. CognIDE captures the line of
code changed by the developer, and then associates the psychophys-
iological data captured during the change of the code snippet. As
the developer writes code, the CodeLens captures the typing events,
sends them to the data server, which returns a set of psychophysio-
logical metrics that, consequently, will be presented near the code
snippet that has triggered the event.

5 METHODOLOGY
This section focuses on presenting the methodology to evaluate the
CognIDE. Our assessment focused on evaluating issues considering
the perception of ease of use, utility perception, attitude, and intent
of behaviour by developers, regarding the CognIDE features.

396

CognIDE: A Psychophysiological Data Integrator Approach for Visual Studio Code SBES ’20, October 21–23, 2020, Natal, Brazil

Table 1: Distribution of Technology Acceptance Model questionnaire responses.

(n = 6) I totally
agree

I partially
agree

Neutral I partially
disagree

I totally dis-
agree

Ease of Use Perception

I considered CognIDE easy to use 3 3 0 0 0
I considered the CognIDE easy to set it up 3 3 0 0 0

Usefulness Perception

CognIDE would help to find points that the developer faced difficulties 6 0 0 0 0
CognIDE would enable the identifying of potentially defectuous code snippets 6 0 0 0 0
CognIDE would assist in code review 4 1 1 0 0
CognIDE would facilitate to decide across code refactoring prioritization 6 0 0 0 0

Behavioral Intention to Use

I would use CognIDE as a code review tool 5 1 0 0 0
I would use CognIDE as a decision support tool in code refactoring prioritization 5 1 0 0 0

Figure 4: Psychophysiological metrics being presented
alongside the source code.

This investigation sought to explore the following research ques-
tions: “RQ1: Is CognIDE an alternative as a support tool for the devel-
opers?”.

5.1 Experimental Design
This phase has been characterized by: (1) the selection of the sub-
jects, (2) the execution of the experimental process, and (3) the
post-experiment data collection.

As subjects, six professionals who worked in the software devel-
opment industry in various types of projects and experienced the
use of different programming languages were selected by conve-
nience and ease of access.

For the execution of the experimental process, the following
steps were adopted by the participants:

• Step1: Log in a remote computer running Visual Studio Code
and the CognIDE server;

• Step 2: Access the Chronograph dashboard where the met-
rics are presented;

• Step 3: Perform an analysis based on your own perception;
• Step 4: In Visual Studio Code, open a snippet of source
code previously implemented and interpreted the metrics
presented based on your own perceptions.

Once the experimental process execution was accomplished, a
set of three questionnaires were applied as the post-experimental
data collection:

• Step 1: Characterization of participants: A sociodemo-
graphic questionnaire was applied, aiming to provide an
overview of the developer’s profile;

• Step 2: Application of TAM: To measure the acceptance
level, the participants fulfilled the contextualized version of
Technology Acceptance Model (TAM) questionnaire [9];

• Step 3: Interview: The authors performed a structured in-
terview with the selected participants, collecting feedback
for aspects that have not been covered by the previous ques-
tionnaires.

It is worth noting that such metrics used in the experimental
phase are not intended to assess the relationship between these and
the source code produced, neither quantity any real psychophysio-
logical state of the subjects during the experiment.

6 EMERGING RESULTS
Table 1 presents the collected results after applying the TAM ques-
tionnaire.

Participant’s profile.After applying the experimental and feed-
back collection phases, in a group of six participants, it was possible
to verify that their half was composed of individuals aged between
20 and 29 years old, while the second half was composed of those
aged between 30 and 39 years old. Mostly Software Developers
(50%), followed by Software Engineers, Tech Leads, and Software
Architects (16.7% each). Regarding their work experience, the major-
ity (83.3%) hadmore than 6 years of acting in Software Development.
When asked about their belief that the software development pro-
cess can be affected by human factors, and not entirely technical
ones, there was unanimity (100%) of agreement, a response that
was repeated when asked if the use of psychophysiological data
could be related to the quality of the code produced.

Results from the TAM questionnaire. Through the applica-
tion of TAM, it was possible to evaluate the perceived ease of use,
perceived utility, and behavioral intention to use about CognIDE.
As shown in Table 1, participants agree that CognIDE is easy to
use and set up (50% fully agree and 50% partially agree). There was
unanimity in agreeing that the tool would help to identify points of

397

SBES ’20, October 21–23, 2020, Natal, Brazil Roger Denis Vieira and Kleinner Farias

difficulty in the code by the developers, defective snippets of code
and facilitate the decision how to refactoring the code (100% totally
agree in each aspect), although there is some resistance about its
usefulness in code review (66.66% totally agree, 16.67% partially
agree and 16.67% are neutral). As for the intention of future use,
the participants demonstrated the use as a code review tool, as well
as a data provider to assist in prioritizing code refactoring (83.33%
totally agree and 16.67% partially agree, in each aspect).

Interview findings. Regarding the interview, it was possible to
verify that there was unanimity in the acceptance of the CognIDE
Project by the participants, mainly in its usage as a novel tool ca-
pable of help in estimating task sizes, since it brings metrics that
can be related to the complexity level of the proposed activities.
Another aspect brought by the interviewees was the possibility of
identifying smells in the code based on certain psychophysiologi-
cal patterns, similar to what occurs in tools such as Coverity and
SonarQube. Finally, even though the participants showed concerns
about privacy in the collection of psychophysiological data to be
used as a metric, they expressed acceptance regarding the tool,
both in improving the software development process and in their
productivity.

7 CONCLUSION AND FUTUREWORKS
This article introduced a tool-supported approach for integrating
psychophysiological data into the Visual Studio Code. The CognIDE
was evaluated through interviews and a questionnaire of technol-
ogy acceptance with 6 professionals. Despite being a preliminary
assessment, the acceptance obtained by the subjects encourages
the implementation of a richer version of CognIDE in terms of new
features and the development of future studies aiming to evaluate
it across a bigger amount of developers.

As future works, the authors are planning to perform a con-
trolled experiment to assess the impact of language features, such
as Lambda expressions and syntax sugar, on the cognitive load of
developers when they perform maintenance tasks. The proposed
approach will allow the authors to capture the cognitive load while
the developer changes code snippets. Furthermore, metrics for the
coarser-grained block of code will be introduced in the CognIDE. In
this sense, are being planned for the usage of a Language Server to
improve the granularity level of the metrics. For instance, alongside
a method or iteration blocks as well.

8 ACKNOWLEDGMENT
This work was carried out with the support of the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES),
under financing code 001 and the Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (CNPq), code 313285 / 2018-7.

REFERENCES
[1] Venera Arnaoudova, Sarah Fakhoury, and Devjeet Roy. 2020. VITALSE : Visu-

alizing Eye Tracking and Biometric Data. In Demonstrations in 42 International
Conference on Software Engineering. 1–4.

[2] Annushree Bablani, Damodar Reddy Edla, Diwakar Tripathi, and Ramalin-
gaswamy Cheruku. 2019. Survey on brain-computer interface: An emerging
computational intelligence paradigm. Comput. Surveys 52, 1 (2019). https:
//doi.org/10.1145/3297713

[3] Kimberly Chu and Chui Yin Wong. 2015. Player’s attention and meditation
level of input devices on mobile gaming. Proceedings - 2014 3rd International

Conference on User Science and Engineering: Experience. Engineer. Engage, i-USEr
2014 October (2015), 13–17. https://doi.org/10.1109/IUSER.2014.7002669

[4] Benjamin Clark and Bonita Sharif. 2017. ITraceVis: Visualizing Eye Movement
Data Within Eclipse. Proceedings - 2017 IEEE Working Conference on Software
Visualization, VISSOFT 2017 2017-Octob (2017), 22–32. https://doi.org/10.1109/
VISSOFT.2017.30

[5] J. Duraes, H. Madeira, J. Castelhano, C. Duarte, and M. Castelo Branco. 2016.
WAP: Understanding the Brain at Software Debugging. Proceedings - International
Symposium on Software Reliability Engineering, ISSRE (2016), 87–92. https://doi.
org/10.1109/ISSRE.2016.53

[6] Benjamin Floyd, Tyler Santander, and Westley Weimer. 2017. Decoding the
Representation of Code in the Brain: An fMRI Study of Code Review and Ex-
pertise. Proceedings - 2017 IEEE/ACM 39th International Conference on Software
Engineering, ICSE 2017 (2017), 175–186. https://doi.org/10.1109/ICSE.2017.24

[7] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott, andManuela
Züger. 2014. Using psycho-physiological measures to assess task difficulty in soft-
ware development. Proceedings - International Conference on Software Engineering
1 (2014), 402–413. https://doi.org/10.1145/2568225.2568266

[8] Thomas Fritz and Sebastian C. Muller. 2016. Leveraging Biometric Data to Boost
Software Developer Productivity. 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (2016), 66–77. https://doi.org/10.
1109/saner.2016.107

[9] Nikola Marangunić and Andrina Granić. 2015. Technology acceptance model: a
literature review from 1986 to 2013. Universal Access in the Information Society
14, 1 (2015), 81–95. https://doi.org/10.1007/s10209-014-0348-1

[10] Sebastian C. Müller and Thomas Fritz. 2016. Using (bio)metrics to predict code
quality online. Proceedings - International Conference on Software Engineering
14-22-May- (2016), 452–463. https://doi.org/10.1145/2884781.2884803

[11] Gail C. Murphy. 2019. Beyond integrated development environments: adding
context to software development. In IEEE/ACM 41st International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE, 73–76.

[12] Norman Peitek, Sven Apel, Andre Brechmann, Chris Parnin, and Janet Siegmund.
2019. CodersMUSE: Multi-modal data exploration of program-comprehension
experiments. IEEE International Conference on Program Comprehension 2019-May
(2019), 126–129. https://doi.org/10.1109/ICPC.2019.00027

[13] Stevche Radevski, Hideaki Hata, and Kenichi Matsumoto. 2015. Real-time
monitoring of neural state in assessing and improving software developers’
productivity. Proceedings - 8th International Workshop on Cooperative and
Human Aspects of Software Engineering, CHASE 2015 (2015), 93–96. https:
//doi.org/10.1109/CHASE.2015.28

[14] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. Pro-
ceedings - International Conference on Software Engineering 1 (2014), 378–389.
https://doi.org/10.1145/2568225.2568252

[15] Janet Siegmund, Norman Peitek, André Brechmann, Chris Parnin, and Sven Apel.
2020. Studying Programming in the Neuroage: Just a Crazy Idea? Communation
of the ACM 63, 6 (May 2020), 30–34. https://doi.org/10.1145/3347093

398

https://doi.org/10.1145/3297713
https://doi.org/10.1145/3297713
https://doi.org/10.1109/IUSER.2014.7002669
https://doi.org/10.1109/VISSOFT.2017.30
https://doi.org/10.1109/VISSOFT.2017.30
https://doi.org/10.1109/ISSRE.2016.53
https://doi.org/10.1109/ISSRE.2016.53
https://doi.org/10.1109/ICSE.2017.24
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1109/saner.2016.107
https://doi.org/10.1109/saner.2016.107
https://doi.org/10.1007/s10209-014-0348-1
https://doi.org/10.1145/2884781.2884803
https://doi.org/10.1109/ICPC.2019.00027
https://doi.org/10.1109/CHASE.2015.28
https://doi.org/10.1109/CHASE.2015.28
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1145/3347093

	Abstract
	1 Introduction
	2 Related Works
	3 The CognIDE Approach
	3.1 Overview of the CognIDE approach
	3.2 Component-based Architecture

	4 Implementation Aspects
	4.1 A Proposal of Psycho-data Dashboard
	4.2 An Extension of Visual Studio Code

	5 Methodology
	5.1 Experimental Design

	6 Emerging Results
	7 Conclusion and Future Works
	8 Acknowledgment
	References

